Antigen binding region (Fab)

A large part of the immunoglobulin molecule is responsible for binding to antigens. The Fab region of an antibody consists of two light chains and two heavy chains that are connected to form a Y-shaped molecule. The antigen-binding site is located at the tips of the two arms of the Y, where the Fab regions of the antibody interact with the antigen.

The Fab region contains the variable regions (VH and VL) of the antibody, which are responsible for recognizing the antigen. These regions are highly variable and are responsible for the specificity of the antibody.

Immunoglobulins classes and types

Immunoglobulins are classified into five main classes: IgG, IgA, IgM, IgD, and IgE. Each class has distinct properties and functions.

- **IgG**: This class is the most abundant form of antibody in the bloodstream and is responsible for neutralizing toxins, fighting infections, and mediating immune responses. It has a pentameric structure and is the only class that can cross the placenta.
- **IgA**: Also known as secretory IgA, this class is found in tears, saliva, milk, and other bodily fluids. It plays a critical role in the immune response at mucosal surfaces.
- **IgM**: Found as a pentamer in the bloodstream and as a hexamer in secretions, IgM is the first antibody produced in an immune response. It has a higher affinity for antigens than other immunoglobulins.
- **IgD**: This class is not as abundant and is found on the surface of some B cells. It may function as a co-receptor in antigen recognition.
- **IgE**: Responsible for allergic reactions, IgE antibodies bind to mast cells and basophils, leading to the release of histamine and other inflammatory mediators.

Immunoglobulins isotypes

Immunoglobulins are further classified into isotypes, which are determined by the type of light chain (κ or λ) and the type of heavy chain (γ, δ, α, ε). Each isotype has unique properties and functions:

- **IgG**: The most abundant isotype, responsible for neutralizing toxins, promoting phagocytosis, and activating complement.
- **IgA**: Found in the secretory immune system, responsible for mucosal immunity.
- **IgM**: Found as a pentamer in the bloodstream and as a hexamer in secretions, it is the first antibody produced in an immune response.
- **IgD**: Found on the surface of B cells, may function as a co-receptor in antigen recognition.
- **IgE**: Responsible for allergic reactions, binds to mast cells and basophils, leading to the release of histamine and other inflammatory mediators.

Structure and function of Immunoglobulins

Immunoglobulins are Y-shaped molecules with a constant region (Fc) and two variable regions (VH and VL). The Fc region contains the hinge region, which allows for flexibility, and the variable regions are responsible for antigen binding. The Fc region is important for the activation of complement and the recruitment of immune cells.

- **Hinge region**: This flexible region allows the antibody to adopt different conformations. It is also important for the activation of complement.
- **Fcgamma receptors**: These receptors mediate the activation of immune cells, such as macrophages and neutrophils.
- **Complement activation**: The Fc region of antibodies can activate the complement system, leading to the recruitment of immune cells and the destruction of pathogens.

Antibody specificity

The specificity of an antibody is determined by the structure of its variable regions (VH and VL). Antibodies with different variable regions will bind to different antigens. This specificity is critical for the effective neutralization of pathogens and the protection of the host.

- **Affinity maturation**: Over time, antibodies are selected based on their ability to bind antigens with high affinity. This process, called affinity maturation, ensures that the antibodies produced by the immune system are highly specific and effective.
- **Memory B cells**: These cells help to maintain a reservoir of antibodies that can be quickly mobilized in response to future infections.

Immunoglobulin (Heavy chain) isotypes

Immunoglobulins are classified into five main classes based on the type of heavy chain: IgG, IgA, IgM, IgD, and IgE.

- **IgG**: The most abundant immunoglobulin class, responsible for neutralizing toxins, promoting phagocytosis, and activating complement.
- **IgA**: Found in the secretory immune system, responsible for mucosal immunity.
- **IgM**: Found as a pentamer in the bloodstream and as a hexamer in secretions, it is the first antibody produced in an immune response.
- **IgD**: Found on the surface of B cells, may function as a co-receptor in antigen recognition.
- **IgE**: Responsible for allergic reactions, binds to mast cells and basophils, leading to the release of histamine and other inflammatory mediators.

Pepsin digestion of the Ig molecule

Pepsin is a protease that breaks down proteins into smaller peptides. Pepsin digestion of the Ig molecule results in the cleavage of the light chains and the formation of Fab and F(ab')2 fragments. The Fab fragment contains the antigen-binding site, while the F(ab')2 fragment is a dimer of Fab fragments.

- **Fab fragment**: Contains the antigen-binding site and is responsible for the initial binding to the antigen.
- **F(ab')2 fragment**: A dimer of Fab fragments, responsible for the continued binding and neutralization of the antigen.

Fc region

The Fc region of antibodies is responsible for the activation of complement and the recruitment of immune cells. It contains the site for binding to Fcgamma receptors on immune cells, allowing for the activation of the complement cascade and the recruitment of immune cells.

- **Cross-linking of Fc receptors**: The Fc region can cross-link Fcgamma receptors on immune cells, leading to the activation of complement and the recruitment of immune cells.
- **Activation of complement**: The Fc region contains the sites for binding to complement components, allowing for the activation of the complement cascade.

Rationale of antigen classes

The five main classes of immunoglobulins (IgG, IgA, IgM, IgD, IgE) are chosen based on their specific functions.

- **IgG**: The most abundant immunoglobulin class, responsible for neutralizing toxins, promoting phagocytosis, and activating complement.
- **IgA**: Found in the secretory immune system, responsible for mucosal immunity.
- **IgM**: Found as a pentamer in the bloodstream and as a hexamer in secretions, it is the first antibody produced in an immune response.
- **IgD**: Found on the surface of B cells, may function as a co-receptor in antigen recognition.
- **IgE**: Responsible for allergic reactions, binds to mast cells and basophils, leading to the release of histamine and other inflammatory mediators.

Memory B cells and antibody production

Memory B cells are long-lived cells that help to maintain a reservoir of antibodies that can be quickly mobilized in response to future infections. They are essential for the long-term protection of the host against pathogens.

- **Primary response**: Initially, the immune system mounts a primary response to an antigen, resulting in the production of antibodies and the activation of immune cells.
- **Secondary response**: Upon secondary exposure to the same antigen, the immune system mounts a more rapid and robust secondary response, resulting in the production of antibodies with higher affinity and better effector function.

Immunoglobulin (Heavy chain) isotypes

Immunoglobulins are classified into five main classes based on the type of heavy chain: IgG, IgA, IgM, IgD, and IgE.

- **IgG**: The most abundant immunoglobulin class, responsible for neutralizing toxins, promoting phagocytosis, and activating complement.
- **IgA**: Found in the secretory immune system, responsible for mucosal immunity.
- **IgM**: Found as a pentamer in the bloodstream and as a hexamer in secretions, it is the first antibody produced in an immune response.
- **IgD**: Found on the surface of B cells, may function as a co-receptor in antigen recognition.
- **IgE**: Responsible for allergic reactions, binds to mast cells and basophils, leading to the release of histamine and other inflammatory mediators.

Fc region

The Fc region of antibodies is responsible for the activation of complement and the recruitment of immune cells. It contains the site for binding to Fcgamma receptors on immune cells, allowing for the activation of complement and the recruitment of immune cells.

- **Cross-linking of Fc receptors**: The Fc region can cross-link Fcgamma receptors on immune cells, leading to the activation of complement and the recruitment of immune cells.
- **Activation of complement**: The Fc region contains the sites for binding to complement components, allowing for the activation of the complement cascade.

Rationale of antigen classes

The five main classes of immunoglobulins (IgG, IgA, IgM, IgD, IgE) are chosen based on their specific functions.

- **IgG**: The most abundant immunoglobulin class, responsible for neutralizing toxins, promoting phagocytosis, and activating complement.
- **IgA**: Found in the secretory immune system, responsible for mucosal immunity.
- **IgM**: Found as a pentamer in the bloodstream and as a hexamer in secretions, it is the first antibody produced in an immune response.
- **IgD**: Found on the surface of B cells, may function as a co-receptor in antigen recognition.
- **IgE**: Responsible for allergic reactions, binds to mast cells and basophils, leading to the release of histamine and other inflammatory mediators.

Memory B cells and antibody production

Memory B cells are long-lived cells that help to maintain a reservoir of antibodies that can be quickly mobilized in response to future infections. They are essential for the long-term protection of the host against pathogens.

- **Primary response**: Initially, the immune system mounts a primary response to an antigen, resulting in the production of antibodies and the activation of immune cells.
- **Secondary response**: Upon secondary exposure to the same antigen, the immune system mounts a more rapid and robust secondary response, resulting in the production of antibodies with higher affinity and better effector function.